DVB-RCT: a very Robust and Flexible Return Channel solution for DVB-T!

From a pure technical point of view, DVB-RCT is built around the most promising technologies for digital transmission and information theory; in addition to the uncontested benefits of first generation OFDM technology for broadband portable and mobile services, Multiple Access OFDM included in the DVB-RCT specification provides the following characteristics:

- Turbo Codes or Concatenated Codes
- Time Interleaving
- Band Segmentation (from 1 MHz slot up)
- Dynamically Assigned Adaptive Modulation
- Power Ranging to reduce interference

Turbo or Concatenated Coding

DVB-RCT is an extremely robust system. Turbo Coding or Concatenated Coding, which is employed, gives a further reduction in the required C/N ratio of 1.5dB. As a result, some Modulation Modes of DVB-RCT require a C/N of only 4dB!

Time Interleaving

Time Interleaving gives at least an additional 5dB improvement against the Impulsive Interference (the actual figure depends on the repetition rate of the interference). This ensures that the coverage area of the Multiple Access OFDM signals can be designed to closely match the service area of Digital Terrestrial Television broadcast, thus reducing the need for new installations.
Band Segmentation
Band Segmentation greatly eases the problem of access to spectrum: any 1MHz segment of spectrum can be used. This is particularly important as long as analogue terrestrial transmissions continue.

The spectrum signature of analogue TV is dominated by energy near the vision carrier. For example, if Channel 50 is used in Coverage Area A then DVB-RCT can use Channel 50 in the adjacent Coverage Area B at 2 MHz above the Vision Carrier, where the interfering energy is 30dB+ down relative to the vision carrier.

A key commercial advantage of Band Segmentation is that different Interactive TV Service Providers can be assigned their own 1MHz of spectrum and can thereby remain independent of one another.

Dynamically Assignable Adaptive Modulation (DAAM)
DVB-RCT supports within the same cell the simultaneous use of different types of modulation from 4QAM (1/2 rate) to 64 QAM (3/4 rate). This feature called "Dynamically Assignable Adaptive Modulation" enables the Service Provider to control the level of interference from a given cell into neighbouring co-channel cells while, at the same time making maximum use of the allocated spectrum.

This can be achieved by assigning the most robust form of modulation (e.g. 4QAM 1/2 rate) to users near the outer boundary of the cell allowing these users to use the minimum possible amount of power to transmit back to the Base Station. Even these users, close to the center of a cell, will use more power to enjoy higher data throughput, as they are further away from other cells, they will cause less interference into the other co-channel cells.

Power Ranging
DVB-RCT uses a power ranging system, similar to that used in Cellular phones, to ensure that the lowest power is used by the Interactive Terminals at all times. This is also consistent with the need for spectrum efficiency.

Spectrum efficiency
The new features highlighted in Section 5 above ensure that DVB-RCT is highly spectrum efficient - a feature that will become more and more important over the next 5-10 years. DVB-RCT can rightly be seen as a 2nd Generation OFDM system.

Carrier spacing, burst structures
To provide a shared wireless return channel for Terrestrial distribution system, the DVB-RCT standard makes use of a dedicated radio frequency channel and organises it to allow concurrent access from many individual Interactive Terminals, using TDMA/OFDMA techniques.

The method used to organise the DVB-RCT channel is inspired by the DVB?T standard: a partition of the whole radio frequency return channel is performed in both time & frequency domains. Accordingly, the DVB-RCT RF channel provides a grid of time-frequency slots, which are distributed to the individual User terminals.

DVB-RCT has 3 Carrier Spacings (CS) and 3 Burst (slot) Structures (BS1, BS2, BS3) which cover a wide range of deployment scenarios from non-dense, very large broadcasting type cells to very dense networks of small cells.
For instance, in the 2k mode, 59 interactions from different subscribers can be processed at a rate up to 600 every second!

DVB-RCT can be deployed for a small fraction of the cost of any competing system - for example PSTN, XDSL, GSM or UMTS.

DVB-T and DVB-RCT networks can be designed to provide totally 'wire-free' services in the home.

This results in enormous savings to the Service Provider - as it is not necessary to send a technician or antenna erector to each subscriber's home before the service can be initiated.

Cost of DVB-RCT

The overall system costs are made up of User Terminal Costs and Base Station Costs. There is also, of course, the cost of the backhaul-linking network from the Base Stations to Service Provider's main hub - although this will normally be in place for existing broadcasting networks. The reason that DVB-RCT is so cost effective is that a single low cost receive system at the Base Station can process up to 20,000 short interactions per second.

Burst Structures offer various methods to map the user data among the time-frequency slots. In BS1 all the RF power is applied to a single carrier, in BS2 the power is shared across 4 carriers and in BS3 the power is shared across 29 carriers. Whatever the spread of user data amongst the frequency carriers (ie: whatever the Burst Structure used), a fixed number of bytes must be transferred in any given transmission slot. This results in the various duration of the Burst Structure transmission: BS1 being 29 times longer and BS2 being 4 times longer than BS3.

These features allow a trade-off between transmission time duration and occupied bandwidth.

<table>
<thead>
<tr>
<th>Carrier spacing and symbol duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1 ~1kHz ~1000 ms</td>
</tr>
<tr>
<td>CS2 ~2 kHz ~500 ms</td>
</tr>
<tr>
<td>CS3 ~4 kHz ~250 ms</td>
</tr>
</tbody>
</table>

For further information...

Please contact:

Mr. Peter MacAvock
DVB Project Office
Phone: +41 22 717 27 19
Fax: +41 22 717 27 27
e-mail: macavock@dvb.org

WP-03, March 2001